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ABSTRACT
Background: The role of diet on hypertensive disorders of pregnancy (HDPs), including preeclampsia and gestational

hypertension (GHTN), remains unclear.

Objectives: We evaluated whether adherence during pregnancy to dietary recommendations that reduce

cardiovascular disease (CVD) in the general population is related to the risk of HDPs.

Methods: We followed 66,651 singleton pregnancies from 62,774 women participating in the Danish National Birth

Cohort. Diet was assessed during week of gestation 25 with an FFQ from which we created 2 dietary pattern scores: 1)

AHA, based on the diet recommendations from the AHA 2020 Strategic Impact Goals; and 2) the Dietary Approaches

to Stop Hypertension (DASH) diet. Cases of HDPs were identified through linkage with the Danish National Patient

Registry. RRs and 95% CIs of HDPs were estimated by increasing quintiles of adherence to the AHA and DASH scores

using log-Poisson regression models with generalized estimating equations—to account for repeated pregnancies per

woman—while adjusting for potential confounders.

Results: We identified 1809 cases of HDPs: n = 1310 preeclampsia (n = 300 severe preeclampsia) and n = 499

cases of GHTN. Greater adherence to AHA or DASH scores was not related to the risk of HDPs. However, when each

component of the scores was separately evaluated, there were positive linear relations of sodium intake with HDPs (P-

linearity < 0.01). Women with the highest sodium intake [median 3.70 g/d (range: 3.52, 7.52 g/d)] had 54% (95% CI:16%,

104%) higher risk of GHTN and 20% (95% CI:1%, 42%) higher risk of preeclampsia than women with the lowest intake

[median 2.60 g/d (range: 0.83, 2.79 g/d)]. In addition, intake of whole grains was positively related to the risk of GHTN

but not to preeclampsia ( P-heterogeneity = 0.002).

Conclusion: Sodium intake during pregnancy, but no other diet recommendations to prevent CVD among nonpregnant

adults, is positively related to the occurrence of HDPs among pregnant Danish women. J Nutr 2020;150:159–166.
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Introduction
Hypertensive disorders of pregnancy (HDPs), including
preeclampsia and gestational hypertension (GHTN), are
responsible for 10–15% of maternal deaths worldwide (1).
In addition, women with a history of HDP are at increased
risk of type 2 diabetes mellitus (2–4) and cardiovascular

disease (CVD) later in life (5). In the general adult population,
diet has a major role in the prevention and management of
hypertension and CVD (6). Current nutritional guidance for
pregnant women focuses on micronutrient supplementation
for the prevention of neural tubal defects and anemia, broad
guidelines of gestational weight gain, and recommendations on
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the avoidance of alcohol and caffeine during pregnancy (7).
As a result, healthcare providers that counsel pregnant women
rarely give specific dietary recommendations to promote better
pregnancy outcomes and women report receiving inadequate
nutrition information from healthcare professionals during
pregnancy (8).

Calcium supplementation plays an important role in the
prevention of preeclampsia among women with deficient
intakes (9, 10). However, in populations without nutritional
deficiencies, the findings have been largely inconclusive when
supplementation with antioxidants (vitamins E and C) (11),
fish oil (12), or sodium restriction (13) were investigated in
clinical trials. Furthermore, little is known about the relation
of dietary patterns and the risk of HDPs (14–17). As a result,
no specific dietary recommendations for the prevention of
HDPs exist among women without micronutrient deficiencies,
nor is it known to what extent dietary recommendations for
the general population may also benefit pregnant women. In
fact, the American College of Obstetricians and Gynecologists
(ACOG) discourages sodium restriction during pregnancy for
the prevention of preeclampsia (7) based on null results
from salt restriction in clinical trials. For these reasons, we
evaluated whether greater adherence during pregnancy to
dietary recommendations aimed at preventing CVD in the
general population—the diet recommendations from the AHA
2020 Impact Strategic Goals (18) and the Dietary Approaches
to Stop Hypertension (DASH) (19)—is related to HDPs among
Danish pregnant women. We hypothesize that greater adherence
to these dietary patterns will be inversely related to the risk of
preeclampsia and GHTN.

Methods
Study population
The Danish National Birth Cohort (DNBC) is a pregnancy cohort that
evaluated multiple exposures during women’s pregnancies, including
diet, and their impact on pregnancy complications and the health
of their offspring (20, 21). All Danish women presenting for their
first prenatal visit (weeks of gestation 6–12) between January 1996
and October 2002 were invited to participate in the study. In total,
101,033 pregnancies from 91,827 women were included in the study.
For each pregnancy, all participants gave written informed consent
and completed 4 telephone interviews at weeks of gestations 12 and
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30, and 6 and 18 mo postpartum. Participants were also mailed a
semi-quantitative FFQ at week of gestation 25, that was completed
and returned within 1 wk of mailing by 77% women. The Danish
Committee of Ethics and the Danish Data Protection Agency approved
the DNBC.

For this study, we included women with singleton pregnancies
(2656 multifetal pregnancies excluded), without history of HDPs
(56 pregnancies with recurrent HDPs excluded) and who completed
the diet assessment (30,859 pregnancies excluded). We then excluded
women who completed the FFQ after receiving a HDP diagnosis
(458 pregnancies excluded). Of the 67,013 remaining pregnancies, we
excluded 361 women with implausible dietary intake (<4.20 MJ/d
or >2.50 MJ/d) and 1 woman of unknown maternal age at birth,
leaving 66,651 pregnancies from 62,774 women available for analysis,
of whom 58,831 women contributed 1 pregnancy, 3895 contributed
2 pregnancies, and 48 contributed 3 pregnancies (Supplemental Figure
1). Completing a diet assessment as part of this study was unrelated to
the risk of preeclampsia [RR = 0.97 (95% CI: 0.88, 1.06)] or GHTN
[RR = 0.96 (95% CI: 0.82, 1.12)].

Dietary assessment and dietary pattern scores.
Diet was assessed with an FFQ that included questions on ∼360 food
items and dietary supplements, which had been specifically developed
for pregnant Danish women (22). Women were asked to report how
often they had consumed each of the listed foods and beverages in the
previous 4 wk, to reflect diet around week of gestation 20. Questions
included 7–11 response categories for frequency of intake, which ranged
from never to ≥8 times/d. Nutrient intakes were estimated by summing
the nutrient contribution of each food item in the questionnaire, taking
into consideration the brand and type of fats used for cooking or added
to food. Nutrient contents of each food and standard portion size were
obtained from the Danish Food Tables (20). In a study that specifically
evaluated fruit and vegetable intake among 88 pregnant women who
participated in DNBC, strong correlations between intake from the
FFQ and 7-d weighed food diaries were reported for fruit (ρ = 0.66),
vegetables (ρ = 0.32), and fruits and vegetables (ρ = 0.57). In addition,
3 biomarkers that reflect fruit and vegetable intake also had reasonable
correlations with the FFQ (22).

We constructed 2 dietary pattern scores: 1) the AHA score based
on the diet recommendations from the AHA 2020 Impact Strategic
Goals (18), and 2) the DASH diet (23) (Supplemental Table 1). For
the AHA score, intake of each component was assigned a continuous
score based on methods previously described (24) with predetermined
cutoffs that assign 10 points when each component was at or greater
than the target level for encouraged foods (fruits and vegetables, whole
grains, fish, nuts, and legumes) or at or less than the target level for
discouraged foods/nutrients [sodium, sugar-sweetened beverages (SSBs),
processed meat, and saturated fat]. Intermediate intakes were scored
linearly between 0 and 10. The DASH diet encourages intake of fruits,
vegetables, low-fat dairy products, whole grains, poultry, fish, and nuts;
and discourages intake of saturated fat, red meat, and SSBs. The DASH
score allocates 1–5 points for each food group based on quintiles
of intake within the study population for intakes of all components.
Scoring was reversed for red and processed meats, SSBs, and sodium,
receiving more points for less consumption. For both scores, sodium
intake (g/d) was energy adjusted with the residual method and saturated
fat intake as densities (percentage of total energy/d). The remaining food
groups represent servings/d.

HDP ascertainment.
Preeclampsia or GHTN diagnoses were obtained via linkage to the
Danish National Patient Registry (NPR) in which outcomes are defined
following International Classification of Diseases-10 codes (25) for
preeclampsia (DO140, DO141, DO142, DO149, DO150, DO151,
DO152, and DO159) and GHTN (DO130, DO131, DO133, DO134,
DO135, DO139). In a validation study among DNBC participants
comparing registry diagnosis to medical record reviews, preeclampsia
diagnosis had a specificity of 99% and a sensitivity of 69% (26). GHTN
diagnosis was limited to those registered in the NPR from outpatient
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TABLE 1 Baseline demographic characteristics according to second trimester of pregnancy adherence to the diet recommendations
from the AHA 2020 Impact Strategic Goals (18) and DASH (19) diet among 66,651 singleton pregnancies from the Danish National
Birth Cohort (1996–2002)1

AHA primary score AHA secondary score DASH score

Q1 Q5 Q1 Q5 Q1 Q5

Median score, points (IQR) 23 (20, 25) 41 (40, 43) 35 (31, 37) 62 (60, 65) 19 (17, 20) 30 (28, 31)
n pregnancies 13,942 14,056 12,604 14,015 14,734 14,665
Demographic characteristics

Maternal age at birth, y 29 ± 4 31 ± 42 29 ± 4 31 ± 42 30 ± 4 31 ± 42

Prepregnancy BMI, kg/m2 24.3 ± 4.69 22.8 ± 3.662 24.2 ± 4.65 22.9 ± 3.652 24.4 ± 4.66 22.7 ± 43.612

Height, cm 168 ± 6 169 ± 62 168 ± 6 169 ± 62 168 ± 6 169 ± 62

High school graduate, % 32 482 30 502 33 472

Never smoker, % 67 822 65 842 68 812

Diagnosis of hypertension before pregnancy, % 1.02 0.822 1.18 0.762 1.22 0.68
Diet characteristics

Total energy, MJ/d 9.37 ± 2.73 10.6 ± 2.442 10.1 ± 2.97 10.2 ± 2.352 9.2 ± 2.53 11.0 ± 2.692

Protein, %E/d 15 ± 3 15 ± 22 15 ± 3 16 ± 22 15 ± 2 15 ± 22

Carbohydrate, %E/d 54 ± 6 55 ± 62 51 ± 6 57 ± 52 52 ± 6 56 ± 62

Total fat, %E/d 31 ± 6 29 ± 62 34 ± 6 26 ± 52 32 ± 6 28 ± 62

Saturated fat, %E/d 13 ± 3 12 ± 32 15 ± 3 10 ± 32 14 ± 3 11 ± 32

Drank alcohol, % 50 382 49 392 47 412

Water, glass 3/d 3 ± 2 5 ± 22 3 ± 2 5 ± 22 4 ± 2 5 ± 22

Vitamin C, g/d 0.01 ± 0.08 0.17 ± 0.092 0.11 ± 0.07 0.18 ± 0.092 0.09 ± 0.05 0.19 ± 0.112

Vitamin E, g/d 0.01 ± 0.03 0.09 ± 0.032 0.01 ± 0.00 0.01 ± 0.032 0.07 ± 0.03 0.09 ± 0.032

Calcium, g/d 1.32 ± 0.57 1.52 ± 0.522 1.35 ± 0.56 1.49 ± 0.532 1.17 ± 0.48 1.78 ± 0.562

Sodium, g/d 3.15 ± 0.51 3.07 ± 0.392 3.21 ± 0.49 3.06 ± 0.432 3.32 ± 0.48 3.00 ± 0.402

Supplements
Vitamin C, g/d 0.09 ± 0.11 0.10 ± 0.142 0.88 ± 0.99 0.10 ± 0.142 0.09 ± 0.01 0.10 ± 0.142

Vitamin E, g/d 0.01 ± 0.03 0.01 ± 0.032 0.01 ± 0.04 0.01 ± 0.032 0.01 ± 0.03 0.01 ± 0.032

Calcium, g/d 0.21 ± 0.48 0.19 ± 0.452 0.19 ± 0.47 0.21 ± 0.482 0.23 ± 0.52 0.16 ± 0.422

1Values are presented as means ± SDs or percentage (%). DASH, Dietary Approaches To Stop Hypertension; Q, quintile of adherence; %E, percentage of total energy.
2P value < 0.05 for differences across quintiles from Kruskal-Wallis test for continuous variables and chi-square tests for categorical variables.
31 glass = 237 mL.

and inpatient records, which may have a more severe clinical presenta-
tion compared to blood pressure measurements from medical records.

Assessment of covariates.
Women reported age at birth, education, weight, height, socioeconomic
status, cohabitation status, homeownership, education, and supplement
use in the first telephone interview (week of gestation 12). Height and
weight were used to estimate prepregnancy BMI (kg/m2). Information
on smoking status, and fish oil supplement use was obtained from the
second telephone interview (week of gestation 30). Other relevant health
information, including infertility diagnosis and treatment, and history
of pregnancy outcomes, were obtained from the NPR.

Statistical analysis
Differences in baseline characteristics across quintiles of the AHA
and DASH scores were compared and we computed the Spearman
correlation between the 2 patterns to assess the similarity of exposures.
We estimated the RR and 95% CI of incident HDPs, overall and
separately for preeclampsia or GHTN, using log-Poisson (27)
generalized estimating equation models (28) with an exchangeable
working correlation structure to account for within-woman correlations
across pregnancies. Tests for linear trend were conducted with use of the
median values of intake in each quintile (29). To adjust for confounding,
we used directed acyclic graphs considering their prior biological
association to nutrient intake or whether they were known predictors of
preeclampsia in this population (30). The adjusted models included total
energy intake (MJ/d), age (<30 y, 30–34 y, and ≥35 y), prepregnancy
BMI (<18.5, 18.5–24.9, 25–29.9, ≥30), parity (nulliparous, 1, 2, ≥3),
smoking (nonsmoker, smokers: occasional, daily: <15cigarettes/d,
≥15 cigarettes/d), concomitant gestational diabetes (yes, no), height

(<165 cm, 165–168 cm, 169–172 cm, ≥173 cm, and unknown), region
in Denmark (Copenhagen, others), education (high school, other), and
intakes of vitamin C and vitamin E (g/d) (31). Finally, to estimate the
proportion contributed by each food group to a specific nutrient, we
fitted stepwise linear regression models to estimate R2 values from the
FFQ (32).

We first evaluated the risk of preeclampsia, including severe
preeclampsia, and GHTN according to increasing adherence to AHA
and DASH scores by comparing women with the highest adherence with
women with the lowest score adherence. We also considered each of the
components of the overall recommendation and estimated the RR (95%
CI) of preeclampsia or GHTN per unit increase, while adjusting for
the remaining components of the overall recommendations. To check
the adequacy of the model we examined the possibility of a nonlinear
relation between nutrient intakes and all HDPs with restricted cubic
splines (33). To assess nonlinearity, we used the likelihood ratio test
comparing the model with only the linear term to the model with the
linear and the cubic spline terms.

In sensitivity analyses, we excluded all women with a diagnosis
of hypertension before pregnancy and when preeclampsia is the main
outcome of interest, we excluded those with a diagnosis of GHTN from
the study population, and vice versa, making normotensive women the
comparison group. Lastly, to assess effect modification, we used cross-
product terms of the AHA primary and DASH scores, intakes of sodium
and whole grain with age (<30 y, ≥30 y), prepregnancy BMI (<25,
≥25), parity (nulliparous, parous), and smoking during pregnancy (yes,
no) with the risk of preeclampsia or GHTN. To assess differences
for each AHA secondary score component between pregnancies with
preeclampsia and pregnancies with GHTN, we calculated pairwise tests
(P-heterogeneity) by employing multivariable generalized estimating
equation models (i.e., sodium intake in pregnancies with preeclampsia
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TABLE 2 Association of second trimester adherence to the dietary recommendations from the AHA 2020 Impact Strategic Goals
(18) and the DASH (19) diet with risk of preeclampsia (n = 66,651 pregnancies), the Danish National Birth Cohort (1996–2002)1

Relative risk (95% CI) of preeclampsia by quintiles of adherence

Q1 Q2 Q3 Q4 Q5 P-trend

AHA primary score
Median, (range) 23 (4, 26) 29 (27, 30) 35 (31, 37) 36 (35, 38) 41 (39, 49) —
n cases 311 262 278 231 228 —
n pregnancies 14,258 11,911 14,000 12,937 13,545 —
Age and energy2 1.00 1.02 (0.86, 1.19) 0.92 (0.79, 1.09) 0.83 (0.70, 0.98) 0.79 (0.66, 0.94) <0.01
Multivariable3 1.00 1.08 (0.92, 1.27) 1.01 (0.86, 1.18) 0.92 (0.77, 1.10) 0.90 (0.75, 1.08) 0.13
Multivariable vs. normotensive4 1.00 1.08 (0.92, 1.27) 1.01 (0.85, 1.18) 0.92 (0.78, 1.10) 0.90 (0.75, 1.08) 0.14
Multivariable excluding HTN before pregnancy5 1.00 0.98 (0.83, 1.17) 1.00 (0.85, 1.18) 0.90 (0.75, 1.08) 0.88 (0.73, 1.06) 0.14

AHA secondary score
Median, (range) 35 (9, 39) 43 (40, 46) 49 (47, 51) 54 (52, 57) 62 (58, 79) —
n cases 271 289 218 268 254 —
n pregnancies 12,604 14,708 12,095 13,229 14,015 —
Age and energy2 1.00 0.91 (0.78, 1.08) 0.84 (0.70, 1.00) 0.94 (0.80, 1.12) 0.88 (0.74, 1.04) 0.21
Multivariable3 1.00 0.95 (0.81, 1.12) 0.90 (0.75, 1.08) 1.02 (0.86, 1.22) 0.95 (0.79, 1.14) 0.78
Multivariable vs. normotensive4 1.00 0.95 (0.81, 1.12) 0.90 (0.75, 1.08) 1.02 (0.86, 1.21) 0.95 (0.79, 1.14) 0.77
Multivariable excluding HTN before pregnancy5 1.00 0.94 (0.80, 1.12) 0.95 (0.80, 1.13) 1.00 (0.83, 1.20) 0.96 (0.79, 1.15) 0.82

DASH score
Median, (range) 19 (9, 20) 22 (21, 22) 24 (23, 25) 26 (26, 27) 29 (28, 39) —
n cases 310 246 281 232 241 —
n pregnancies 13,942 11,671 13,941 13,041 14,056 —
Age and energy2 1.00 0.97 (0.81, 1.15) 0.97 (0.84, 1.14) 0.88 (0.73, 1.06) 0.91 (0.77, 1.08) 0.19
Multivariable3 1.00 0.99 (0.83, 1.19) 1.02 (0.87, 1.20) 0.93 (0.77, 1.12) 0.96 (0.80, 1.15) 0.57
Multivariable vs. normotensive4 1.00 0.99 (0.82, 1.18) 1.02 (0.87, 1.20) 0.93 (0.77, 1.12) 0.96 (0.80, 1.15) 0.56
Multivariable excluding HTN before pregnancy5 1.00 1.02 (0.85, 1.23) 1.03 (0.88, 1.22) 0.97 (0.79, 1.17) 0.99 (0.82, 1.20) 0.83

1DASH, Dietary Approaches to Stop Hypertension; GHTN, gestational hypertension; HTN, hypertension; ICD-10, International Classification of Diseases, 10th revision; Q,
quintile of adherence.
2Model adjusted for total energy intake and maternal age at pregnancy.
3Model adjusted for total energy intake, age, prepregnancy BMI, parity, smoking, concurrent gestational diabetes, height, Denmark demographic regions, education, vitamin C
and vitamin E intake.
4Excluded 499 cases of GHTN (n = 65,152 pregnancies).
5Excluded 589 pregnancies with diagnosis of chronic hypertension before pregnancy (ICD-10: I10, I11, I12, I13, I15, I16).

compared with pregnancies with GHTN). Thus, for these models we
only included women with any HDPs diagnoses (n = 1809). All
statistical analyses for this paper were generated by SAS software,
Version 9.4 released in 2013 (SAS Institute Inc.).

Results
We documented 1809 cases of HDPs (2.71%) among the
66,651 pregnancies [n = 1310 cases of preeclampsia (1.98%)
and n = 499 (0.75%) cases of GHTN]. The mean ± SD age at
pregnancy was 30 ± 4 y, prepregnancy BMI was 24 ± 4, and
height was 169 ± 6 cm. The AHA primary score had a moderate
positive correlation with the DASH score (ρ = 0.66), which
was even stronger for the AHA secondary score (ρ = 0.77).
Women with greater adherence to the diet recommendations
from the AHA 2020 Strategic Impact Goals and the DASH
diet were more likely to have higher education, be nonsmokers,
drink more water, and were less likely to drink alcohol during
pregnancy. Nutritional characteristics according to adherence
scores followed the expected pattern based on the intent of the
recommendations ( Table 1).

Greater adherence to the AHA or DASH dietary pattern
scores during the second trimester of pregnancy was not
associated with risk of preeclampsia (Table 2), including severe
preeclampsia (Supplemental Table 2), or GHTN (Supplemental
Table 3). Results were unchanged when preeclampsia or
GHTN were compared exclusively to normotensive pregnancies

(Table 2 and Supplemental Table 3). Neither adjusting for
history of chronic HTN (Supplemental Tables 4 and 5) nor
excluding women with a history of chronic HTN (Table 2,
Supplemental Tables 4 and 5) from the analyses changed the
results. Quantitative changes in the estimates were minimal and
the interpretation of the findings was unaffected.

We then evaluated each component of the recommendation
independently while considering the intake of the remaining
components of the AHA and DASH scores. In these analyses,
sodium intake was positively associated to HDPs overall
(Figure 1) and to preeclampsia, including severe preeclampsia,
and GHTN separately (Supplemental Figure 2). When we
modeled intakes using quintiles of intake, we found that women
in the highest quintile of sodium intake [median 3.70 g/d (range:
3.52, 7.52 g/d)] had a higher risk of HDPs overall [RR 1.29
(95% CI: 1.11, 1.49)], GHTN [RR 1.54 (95% CI: 1.16, 2.04)],
and preeclampsia [RR 1.20 (95% CI: 1.01, 1.42)] than women
in the lowest quintile [median 2.60 g/d (range: 0.83, 2.73 g/d)].
Whole grain intake was only associated with higher risk of
GHTN, but not with preeclampsia or HDPs (Figure 2). No other
individual components were related to HDPs. When intake was
modeled continuously using a cubic spline, sodium intake also
had a positive dose-response relation with all HDPs without
evidence of departure from linearity (P-linearity < 0.01 for
HDP, 0.02 for preeclampsia, and 0.02 for GHTN) (Figure 3).

We then evaluated whether the association of each com-
ponent differed significantly from each other comparing the
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FIGURE 1 Association of adherence to individual components of the AHA (A) and DASH (B) dietary pattern scores during the second trimester
of pregnancy with the risk of HDPs ( n = 66,651 pregnancies). Units for each score component were: an increase from the 10th to the 90th
percentile for sodium intake (1.13 g/d), a 5% increase in E%/d for saturated fat, and serving/d for all the remaining components (fish, SSBs,
WG, FV, Pmeat, SFA, and Nutleg). DASH, Dietary Approaches to Stop Hypertension; E%, percentage of total energy; FFJ, fruits and fruit juices;
GHTN, gestational hypertension; hypertensive disorders of pregnancy; Lwfdairy, low-fat dairy; Na+, sodium; Nutleg, nuts and legumes; Pmeat,
processed meats; RPmeats, red and processed meats; SFA, saturated fatty acids; SSB, sugar-sweetened beverage; Wgrain, whole-grain.

2 HDP phenotypes (Supplemental Figure 2). The association
between intake of whole grains with GHTN was significantly
different from the association of whole grain intake with
preeclampsia (P-heterogeneity = 0.02). We found no evidence
that the association of all other individual score components
related differently to preeclampsia or GHTN (Supplemental
Figure 2). The linear associations remained unchanged when
we compared separate models adjusting for the AHA scores

(excluding sodium points) and its individual components, and
whole grain only (Supplemental Figure 3).

Lastly, we examined whether participant characteristics
modified the relation between adherence to AHA or DASH
scores, sodium, and whole grain with the risk of preeclampsia
or GHTN. Among women with GHTN, there was evidence of
effect modification between smoking during pregnancy with the
AHA primary and the DASH score, as well as prepregnancy
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FIGURE 2 Association between increasing quintiles of sodium (A) and whole grain (B) intakes during the second trimester of pregnancy with
the risk of HDPs ( n = 66,651 pregnancies). HDP, hypertensive disorder of pregnancy.

BMI (<25, ≥25) with the DASH score and sodium intake, that
was not replicated among women with preeclampsia. There was
no evidence of significant heterogeneity for maternal age at birth
(<30 y, ≥30 y) and parity (nulliparous or parous) with any HDP
phenotype (Supplemental Table 6).

Discussion
We examined women’s second trimester adherence to the AHA
and the DASH dietary pattern scores in relation to risk of
HDPs among participants of the DNBC. Although we found no
association between increased adherence to these diet patterns
and risks of HDPs, GHTN, or preeclampsia, we found that
lower sodium intake—a component of both AHA and DASH—
was related to a lower risk of HDPs. Our findings suggest
that while overall recommendations for the management and
prevention of heart disease in the general population may not
directly translate to the prevention of HDPs, sodium reduction,
a cornerstone of these recommendations, may have a role in
preventing HDPs.

The positive association we observed between sodium
intake with the risk of HDPs, is consistent with findings in
animal models and a few observational studies. For example,
feeding aldosterone knockout mice a high salt diet resulted
in reduced litter numbers and higher rates of intrauterine
growth restriction (34). Both of these are signs with placental
hypoperfusion typically seen in preeclampsia, with the limi-
tation that preeclampsia is a disease unique to humans and
is roughly replicated in animal models (35). Third trimester
24-h urinary sodium excretion among women with preeclamp-
sia was related to higher systolic and diastolic blood pressure

(36). The same study found that women with lower sodium ex-
cretion were less likely to have severe preeclampsia and kidney
damage, compared to those with higher sodium excretion. In a
study in Bangladesh, drinking water with sodium levels of 517
mg/L increased the odds of preeclampsia and GHTN (37).

Conversely, a handful of observational studies have pro-
posed that sodium supplementation during pregnancy may
reduce the development of preeclampsia, whereas others
have found null or mixed results (38). It is worth noting
that some of these studies date back to the 1900s, and
most lacked randomization or any type of control for
confounding. Furthermore, a recent meta-analysis that included
2 randomized clinical trials with 603 pregnant women found
that salt restriction did not prevent HDPs (pooled RR of 1.11
(95% CI: 0.46, 2.66) (13), thus ACOG does not consider salt
restriction in their diet recommendations for the prevention of
preeclampsia based on the evidence of these studies.

Sodium intake in early stages of pregnancy is pivotal for
physiologic extracellular volume expansion, which regulates
maternal blood pressure and uteroplacental circulation (39,
40). However, it is not entirely clear whether dietary salt
has a causal association with risk of HDPs. It is also
unknown whether placental sodium metabolism is responsible
for the lower volume expansion coupled with higher urinary
sodium excretion observed in preeclampsia (41). Clearly, further
research into the role of sodium intake during pregnancy on
HDPs is warranted.

We also found relations with whole grain intake that were
not consistent across different HDPs and modeling strategies.
Specifically, intake of whole grains was related to higher risk
of GHTN but not of preeclampsia, which may suggest that
GHTN has other diet risk factors than those in preeclampsia.
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FIGURE 3 Association betw een sodium intake with different hypertensive disorders of pregnancy phenotypes ( n = 66,651 pregnancies).
The relative risks of HDPs were estimated nonparametrically with spline function polynomials with the reference value for sodium 1.50 g/d.
P-linearity represents the test for linear relation. (A) HDPs (P-linearity < 0.01). (B) GHTN (P-linearity = 0.02). (C) Preeclampsia (P-linearity = 0.02).
GHTN, gestational hypertension; HDP, hypertensive disorder of pregnancy.

The association between whole grain intake and higher risk
of GHTN in this population is likely a result of residual
confounding. Whole grains, and in particular rye bread, were a
major source of the estimated sodium intake in this population
at the time of the diet assessment (1996–2002). From the 360
food items listed in the FFQ, rye bread (with butter and with
other food topping) had the highest contribution to sodium
intake (R2 = 0.18). In addition, 89% of the total whole grain
intake was from rye bread in this population of Danish pregnant
women. These facts, along with known difficulties in estimating
sodium intake using FFQs, make this study highly susceptible
to residual confounding.

Our study has several limitations inherent in observational
data such as confounding and measurement error. First, diet
was assessed around week of gestation 25 and participants
were asked to report on their intake during the previous 4 wk,
thus timing of the questionnaire may not adequately capture
the relevant exposure window for preeclampsia, which may
be at the time of placental formation. However, excluding
diagnoses of preeclampsia before completion of the FFQ as
well as excluding women with prior preeclampsia diagnosis and
adjusting the multivariable model for parity and prepregnancy
BMI, allowed us to limit the chance of reverse causation. It
is also not possible to know to what extent our findings may
be generalizable to non-European women. The accuracy of
measuring sodium intake with FFQs is not well understood (42),
and, overall, correlation with measures of 24-h urinary sodium
(gold-standard) was reported to be low in a meta-analysis of
19 observational studies (43). This is a limitation in our study,
particularly because sodium-specific validation was not done
for the FFQ used in DNBC. Another limitation is the sensitivity
of 69% reported in the validation study. Because preeclampsia
diagnosis was highly specific (99%), we are confident that
among women presenting with symptoms of preeclampsia,
noncases were correctly excluded. Strengths of our study include

the prospective design, the use of a previously validated FFQ,
the high specificity of case assessment through linkage with a
National Disease Registry, dietary patterns based on clinical
recommendations which increase generalizability of our results,
and the large sample size that gave us sufficient cases necessary
for the estimation of relative risks with significant statistical
power and to examine different effects for preeclampsia or
GHTN.

In summary, we found that lower sodium intake during
pregnancy among Danish women is related to a lower risk
of HDP. Other specific dietary recommendations, such as
adherence to the AHA and DASH scores, did not seem to
provide benefits during pregnancy among our study population.
Before considering changes to recommendations regarding
sodium intake during pregnancy, additional studies are needed
to confirm or refute our findings.
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